失控

概述

这本书的组织形式不是以一种逻辑线连贯,而是全息的,即每一章都可以独立成书,并表达近乎相同的思想,只是角度上有差异。角度:自然:生态系统,生物群体,大脑结构,意识;人造:经济,分布式系统,控制论概念:活系统自组织,自治涌现自适应去中心化进化。终于摘要完成,有时候分类是比较难分的,因为它虽然引用的是自然方面的例子,却是为了类比突出人工智能。本书还是有一些递进在其中的,慢慢从解密这种分布式活系统,到预言它的方向、目的,最后得出人造与自然融为一体的大一统结论。

虽然涉及了诸多领域,但从分类的结果上看,在生物与生态、网络、人工智能领域最多。

一、基本概念

  • 群体
  • 涌现
  • 自治
  • 分布式
  • 动态网络
  1. 群体

    克雷格·雷诺兹建立在几条简单规律下的群体规律算法。群体曾被看作是生命体的决定性象征,某些壮观的队列只有生命体才能实现。如今根据雷诺兹的算法,群体被看作是一种自适应的技巧,适用于任何分布式的活系统,无论是有机的还是人造的。

  2. 涌现

    当整体行为从各部分的有限行为里有规律地涌现时,身体与心智、整体与部分的二元性就真正烟消云散了。“涌现”是一种非常普遍的自然现象。与之相对应的是日常可见的普遍因果关系这里有一个关于活系统的普遍规律:低层级的存在无法推断出高层级的复杂性。不管是计算机还是大脑,也不管是哪一种方法——数学、物理或哲学——如果不实际地运行它,就无法揭示融于个体部分的涌现模式。

  3. 涌现的解释科学界早就认为大量个体和少量个体的行为存在重大差异。群聚的个体孕育出必要的复杂性,足以产生涌现的事物。随着成员数目的增加,两个或更多成员之间可能的相互作用呈指数级增长。当连接度足够高且成员数目足够大时,就产生了群体行为的动态特性——量变引起质变。

  4. 自治

    意味着每个成员要根据内部规则以及其所处的局部环境状况而各自做出反应。这与服从来自中心的命令,或根据整体环境做出步调一致的反应截然不同。

  5. 分布式系统

    分布式系统的四个突出特点,活系统的特质正是由此而来:

    ◎ 没有强制性的中心控制

    ◎ 次级单位具有自治的特质

    ◎ 次级单位之间彼此高度连接

    ◎ 点对点间的影响通过网络形成了非线性因果关系

  6. 动态网络

    动态网络与其说一个分布式、去中心化的网络是一个物体,还不如说它是一个过程。在网络逻辑中,存在着从名词向动词的转移。如今,经济学家们认为,只有把产品当作服务来做,才能取得最佳的效果。你卖给顾客什么并不重要,重要的是你为顾客做了些什么。

10.2磨损
磨损的标记是涌现出来的。它们是大量个体活动的产物。如同大多数涌现出来的现象一样,磨损有自我巩固的倾向。
磨损是直接刻在物体上的纹身,它在哪里显现,就表明那里有值得注意的不同”

10.3磨损设计
希尔想要做的是将物理磨损所传递的环境意识嫁接到办公室的机器生态中去。比方说,希尔认为使用者与电子文档间的互动记录能大大丰富电子文档的信息。“在使用电子表格对预算进行调整的时候,每个格子修订的次数都可以映射到一个灰度区间,从而以视觉形式表现出哪些格子里的数字被改动得最多或最少。”这样一来就指出了哪里可能有混淆、争议或错误。另一个例子是,在使用效率工具的企业中,人们能够追踪到文件在被各个部门踢来踢去的过程中哪些部分被改动得最多。

活系统
仅有反馈回路、分布式存在、无止境的进化。
反馈式控制、循环性因果、机器的动态平衡和政治博弈理论

生物、生态、进化

  • 共同进化、共生
  • 生物博弈
  • 扰动带来复杂性,复杂性涌现稳定性
  • 进化的跳变性
  • 进化的整体性:受环境的约束,以及优秀的变异只有形成群落才能遗传下去
  • 进化的定向选择(方向性)
  • 拉马克进化:进化与学习的融合

5.3 共同进化
约翰.汤普森:共同进化是互相影响的物种间交互的进化演变。马利筋与黑脉金斑蝶肩并肩结成了一个单系统,互相影响共同进化。共同进化之路上的每一步都使这两个对手缠绕得更加密不可分,直到一方完全依赖于另一方的对抗,从而合二为一。夫妻关系,阴阳统一律,2元共生5.3社会性与共同进化在进化过程中,生物的社会性与日俱增,共同进化的实例也愈来愈多。生物的社会行为越丰富,就越有可能形成互惠互利的关系。同样,我们构建的经济和物质世界越是相互影响,共同努力,我们越能见证到更多的共同进化的实例。社会性与自我,我、双方、一体保罗·埃尔利希认为共同进化推动两个竞争对手进入“强制合作”。他写道:“除掉敌人既损害了掠食者的利益,也损害了被掠食者的利益。”这显然不合乎常理,但又显然是一股推动自然的力量。

5.4 共生系统
共生并非只能成双成对。三个一组也可融合成一个渐进的、以共同进化方式连接的共生系统。整个群落也可共同进化。实际上,任何生物,只要能适应其周边生物,就可以在某种程度上起到间接的共同进化触媒的作用。既然所有的生物都相互适应,就意味着同一生态系统内所有生物都能通过直接共生或间接相互影响的方式参与到一个共同进化的统一体里。共生的理论上资源有限下的竞争,以及淘汰的商业伙伴,商业对手

5.5 活系统标志:动态平衡
活跃状态下的平衡任何活系统:经济体、自然生态系统、复杂的计算机模拟系统、免疫系统,以及共同进化系统,都具有摇摇欲坠的显著特征。

5.7 盖亚:地球共生系统
环境与生物的共生物理环境塑造了生物,生物也塑造了其所处的环境。生命是不断更新的矿物质,矿物质是节奏缓慢的生命。
盖亚沃尔纳德斯基注意到“生物体呈现出一种自我管理的特性”,生物圈似乎也是自我管理的洛夫洛克提出了地球的自治表征的假说。他写道:“地球上的所有生命体集合,从巨鲸到细菌,从橡树到海藻,可以看成是一个单体生命,它能够熟练地操控地球大气层以满足自己的全部需要,而其所具备的能力和能量也远超过其组成部分。”洛夫洛克把这个观点称为盖亚 生物创造自身存活所需的基质,而基质又创造存活其中的生物,这个共同进化的网络就会向周围扩展,直到成为一个自给自足、自我控制的闭环回路。【这个观点与道家天人合一是一个想法】

5.9 囚徒困境对生物的启发
循环囚徒困境在眼前的稳妥收获与未来的高风险高回报之间做出权衡。每一个复杂的自适应组织都面临着基本的权衡。生物必须在完善现有技能、特质(练腿力以便跑得更快)与尝试新特质(翅膀)之间做取舍。

5.11 生物博弈
在一个饰以“镜子上的变色龙”式的叠套花环的世界里,无论你设计或演变出怎样高妙的策略,如果你绝对服从它,为它所用,从进化的角度来看,这个策略就无法与其他具竞争力的策略相抗衡。也即是说,如何在持久战中让规则为你所用才是一个具竞争力的策略。另一方面,引入少许的随机因素(如差错、缺陷)反而能够在共同进化的世界里缔造出长久的稳定,因为这样一来,某些策略就无法被轻易地“山寨”,从而能够在相对长的时期里占据统治地位。【天下皆知美之为美斯恶矣】

5.10 扰动对博弈共生的影响
基于博弈游戏的生态在一个周期内,由不同策略的“物种”所形成的混合维持着非常稳定的状态。然而,这些盛世都被一些突发、短命的不稳定插曲所打断,于是旧的物种灭绝,新的物种生根。持新策略的物种间迅速达成新的稳定

扰动或者错误带来了活力错误能使共同进化关系不致因为胶着太紧而陷入自沉的漩涡,从而保持共同进化的系统顺流前行。向你的错误致敬吧。

5.13 非零和的启发
非零和游戏的启发人们常用零和游戏的观点看世界,其实他们本不该这样。他们常说:‘我比别人做得好,所以我就该发达。’而在非零和游戏里,尽管你比别人做得好,你也可能和他一样潦倒。”

5.14 信息对共同进化的影响
信息与共同进化从共同进化中获得的最有用的教训就是,在共同进化的世界里,控制和保密只能帮倒忙。你无法控制,而开诚布公比遮遮掩掩效果更好。“在零和游戏中你总想隐藏自己的策略,”阿克塞尔罗德说,“但在非零和游戏中,你可能会将策略公之于众,这样一来,别的玩家就必须适应它。”共同进化的关系,从寄生到结盟,从本质上来讲都具有信息的属性。稳步的信息交流将它们焊接成一个单一的系统。

6.1“均衡即死亡,”博格斯如是陈述。这个观点在生态科学圈内流行时间还不很长。“直到20世纪70年代中期,我们所有人都在前人学说的指导下工作,即生物群落正趋向不变的均衡,形成顶极群落。而今,我们看到,正是紊乱和多变真正给自然赋予了丰富的色彩。”“均衡态不仅意味着死亡,它本身就是死亡状态,”博格斯强调,“系统要变得丰富,就需要时间和空间上的变化。

6.2稳定性与多样性如果说自然是建立在恒久流变的基础之上,那么不稳定性可能就是引起自然界生物类型丰富多彩的原因。不稳定的自然力量是多样性产生的根源,这种想法与一条古老的环境主义格言背道而驰:即稳定性产生多样性,多样性又带来稳定性。但如果自然的系统的确并不趋向精致的平衡,我们就应该习惯于和不稳定打交道。多样性并不一定带来稳定性如果增加关联度至超过某一临界值,系统从外界扰动中回复的能力就会突然降低。换句话说,与简单的系统相比,复杂的系统更有可能不稳定。

6.3变化永恒自然本身无论是形式、结构还是构成都不会恒久不动,自然无时无地不在变化。”变化本身,而不是红衫林或国家议会,才是永恒的。问题就变成:什么控制着变化?我们怎样引导变化?在政府、经济体和生态系统等松散团体中的分布式生命可以用任一种刻意的方式加以控制吗?我们能预知未来的变化状态吗?

6.4生物演替第一年到访的杂草是每年开花的草本植物,接着被更坚韧的多年生植物如沙果草和豚草取代,木本的灌木丛会荫蔽并抑制开花植物的生长,随后松树又抑制了灌木的生长。不过,松树的树荫保护了山毛榉和枫树等阔叶木的幼苗,接下来轮到后者坚定地把松树挤出地盘。百年之后,典型的北方阔叶林就几乎完全覆盖了整块土地。整个过程,就好像这片土地本身就是一粒种子。第一年长出一堆野草,过了一些年,它变成浓密的灌木丛,再后来它长成了繁茂的树林。在某一区域,所有生态混合体趋于转替直到它们达到一种成熟、终极、稳定的和谐。演替达到顶极期时,多样物种间的相互需求漂亮地合拍,使整体很难遭到破坏。
【这里隐含着进化的方向性】

6.5派蒂定义的层级是系统内的连接性差异化的产物。那些联系松散以至于“扁平化”的成员,容易形成一个独立的组织层次,与那些成员间联系紧密的区域分离开来。不同的连接性区域产生了层级构造。

6.11出生环境恶劣的极地生物,必须随时应对大自然强加给它们的难以捉摸的变化。而位于热带或深海的栖息地相对“平稳”,因为它们的温度、雨量、光照、养分都持久不变。因此,热带或洋底的平和环境允许那里的物种摒弃以改变生理机能的方式适应环境的需要,并给它们留下以单纯的生态方式适应环境的空间。在这些稳定的栖息地里,我们大有希望观察到许多怪异的共栖和寄生关系的实例——寄生吞噬寄生,雄性在雌性体内生活,生物模仿、伪装成其他生物,事实也正是如此。 没有恶劣环境,生命就只能自己把玩自己,但仍然能够产生变异和新特性,无论在自然界还是人工仿真界,通过将生物投入恶劣而变化多端的环境都能产生更多的多样性。

6.12“想要得到和生命真正类似的行为,不是设法创造出真正复杂的生物,而是给简单的生物提供一个极其丰饶的变异环境。”

6.13生命之歌生命是一种连结成网的东西——是分布式的存在。它是在时空中延展的单一有机体。没有单独的生命。哪里也看不到单个有机体的独奏。生命总是复数形式。(直到变成复数以后——复制繁殖着自己——生命才成其为生命)生命承接着彼此的联系,链接,还有多方共享。

6.14生命是一个行星尺度的现象,一个星球上不可能只有稀疏点点的生命。否则它就会像只有半个身子的动物那样站立不稳。”

8.1生态球的启发
生态球是一个图腾,一个属于所有封闭的生命系统的图腾。部落民众选出某种图腾物,作为连接灵魂与梦想这两个相互分离的世界的桥梁。而生态球,这个被封闭在晶莹剔透的玻璃里面的独特世界,仅仅凭着“存在”,向我们发出邀请,让我们去沉思那些难以把握的图腾似的理念,比如“系统”、“封闭”,甚至“存活”。

8.2变化与更新
森林需要破坏力巨大的飓风来吹倒老树,以便腾出空间让新树生长。大草原上的流火,可以释放必须经过火烧才能摆脱硬壳束缚的物质。没有闪电和火焰的世界会变得僵硬。海洋既有在短期内形成海底暖流的激情,也有在长期的地质运动中挤压大陆板块和海床的激情。瞬间的热力、火山作用、闪电、风力以及海浪都能够让物质世界焕然一新。
生态球越大,达到稳定所需时间就越长,破坏它也就越困难。只要处于正常状态,一个活系统的的集体代谢过程就会扎下根,然后一直持续下去。

9.1关键捕食者与生态
生物圈人共享控制权的方式之一,是起到“关键捕食者” [1] 的作用——生态抑制的最后一招。超过生态位 [2] 的植物或动物数量都受到人类的“仲裁”,保持在合理的范围内。如果薰衣草灌木丛生长过旺,生物圈人就手起刀落,把它们劈回到合适的密度。当热带稀树草原上的草疯长,挤占了仙人掌的生存空间,他们就拼命除草。
不论是温和也好还是粗暴也好,自然都需要一些变化。扰动对养分循环来说至关重要。突如其来的一场大火可以催生出一片大草原或者一片森林。

9.2 足够的复杂性“冒出”稳定性
我们发现,所有复杂的共同进化系统都需要“冒出”。生态系统恢复者,如恢复大草原的帕卡德和恢复楠萨奇岛的温盖特,似乎都发现,可以通过逐渐提高复杂性来重组大型系统;一旦一个系统达到了稳定水平,它就不会轻易地趋向于倒退,仿佛这个系统被新的复杂性带来的凝聚力所“吸引”。人类组织,比如团队和公司,也显示了“冒出”的特征。某些轻微的助力——新加入进来的合适的管理者,巧妙的新工具——可以马上把35个勤奋而有能力的人组织成一个富有创造力的有机体,并取得遥遥领先的成功。只要我们利用足够的复杂性和灵活性来制造机器和机械系统,它们也会“冒出”。

9.3终极技术:生命
生命是终极技术。机器技术只不过是生命技术的临时替代品而已。随着我们对机器的改进,它们会变得更有机,更生物化,更近似生命,因为生命是生物的最高技术

16.1 动物行为学
行为学架构的核心是“去中心化”这样一个关键概念。动物行为是一种去中心化协同,它将许多独立的动作驱动中心像盖房子一样搭建到一起。有些行为模块是由反射现象组成的;它们能调用一些简单的功能,比如遇热时回缩,或者被触碰时闪避。这些反射现象既不知道自己所处的位置,也不知道外界在发生什么事,甚至不知道它们所附属的这个身体当前的目标是什么。无论什么时候,只要出现适当的刺激,它们就会被触发。

这种驱动中心相当于某种代理。代理(不管它是什么物理形式)侦测到一个刺激,然后做出反应。它的反应,或者按计算机行话说是“输出”,在其他模块、驱动中心或代理看来可能是输入。一个代理的输出可能激活处于能动状态的其他模块,或者还可能取消邻近模块的能动状态。显然,这是一个网络的架构,充斥着大量的循环因果关系和首尾相衔的怪圈。

17.1 开放的基因组
大自然之所以能产生令人震惊的多样性,是因为它在本质上是开放的。生命不会仅靠最早诞生的那几个基因去产生令人眼花潦乱的变化。相反,生命最早的发现之一是如何创造新的基因,更多的基因,可变的基因,以及一个更大的基因库。

生命的特征之一是它会不断地拓宽自身的生存空间。大自然是一个不断扩展的可能性之库,是一个开放的大千世界。

我们不知道生命如何突破了从固定基因空间到可变基因空间的分界线。也许某一个特殊的基因决定着染色体中基因的数量。只要使那一个基因产生变异,就可以使链中基因的总数增加或减少。也许基因组的大小是由多个基因间接决定的。或者更有可能的是,基因组的大小是由基因系统自身的结构决定的。

开放的基因组带来开放的进化。一个预先设定了每个基因的工作或基因数量的系统只能在预先设定的范围内进化。一个没有预先确定基因角色和数量的系统才能出奇制胜。

19.1 达尔文主义的质疑
达尔文进化论认为,新的物种是通过不间断的、渐进的、独立的和随机变异的线性过程形成的。

达尔文曾经主动提供过一个实例来说明他的理论所遇到的困难,就是高度复杂的人眼(自那以后,达尔文理论的每一位批评者也都曾用过这个例子)。设计精巧且相互作用的晶状体、虹膜、视网膜等结构,看起来确实挑战了达尔文那种“轻微、累进的”随机改进机制的可信度。
在一个没有进化完全的眼睛中,某些部分会有什么用处,也就是说,一个没有晶状体与之配套的视网膜,或者反过来,没有视网膜与之配套的晶状体能对它的拥有者有什么用处。

19.2变异与选择的疑惑
在野生环境、人工饲养环境以及人工生命环境里,我们都看到了变异的显现。但是,由于看不到更大的变化,我们也很清楚地意识到,产生变异的范围似乎很狭窄,而且往往被限定在同一物种内。
关于这种现象,标准的解释是,我们现在其实在用一个短得有点荒谬的极小的时间跨度来衡量一个发生在漫长地质时间中的事件,那么,我们还能指望看见什么?生命在发生巨变之前以类似于细菌的形态存在了数十亿年。请耐心点吧!

问题归结到是否单靠随机变异和选择机制,就足以在很长的时期内持续地产生出新生事物来。

19.3基因转移假设
在某些情况下,共生伴侣的基因株(碱基片断)会融合在一起。有人为这种共生关系所需的信息间合作提出一种机制,即著名的细胞间的基因转移。
物种间的基因转移也同样会(速度未知)在包括人类的较为复杂的物种之间发生。每种类型的物种都在持续地交换基因,通常由裸露病毒担任信使。病毒自身有时候也被纳入共生。许多生物学家认为人类DNA链中有大块大块的片断是插入的病毒。还有一些生物学家甚至认为这是一个循环——人类很多疾病的病毒就是逃逸的人类DNA的乖戾部分。【这暗示基因可能存在拉马克进化】

19.4内在选择
生物界的突变和变异起源的准确的事实真相仍不确定。我们确知的是:显然,变异不是由于随机突变而产生——至少不总是如此;在变异中其实存在着某种程度的秩序。这是一个古老的观念。早在1926年,斯马茨 [3] 就为这种遗传学上的半秩序起了个名字:内在选择。
允许宇宙射线在DNA编码中产生随机的错误,然后,某种已知的自我修复装置以一种区别对待(但是未知)的方式在细胞中纠正这些错误——纠正某些错误,同时放过另外一些错误。

19.5基因的整体性
饲养员通常会遇到这样的困窘:在挑选某一特定性状的过程中,会同时激活某些未知的基因,从而带来不太如意的副作用。不过,当放松了那些针对这一性状的环境压力之后,生物体的后继世代能够迅速地回复原本的特质,基因组仿佛是弹回到了原点。
变异不仅是非随机的、范围有限的,而且根本就是很难获得的。
有一个高度灵活的基因官僚机构管理着其他基因的生活。最令人惊讶的是,所有生命,从果蝇到鲸鱼,都授权同一个基因管理局实行管理。比如说,在每一种脊椎动物体内,都能发现几乎完全相同的同源异形盒 [5] 自控序列(这是一段主开关基因,可以打开大段的其他基因)

19.6定向变异
变异可以通过某种有意的、精心准备的方式来选择。与其说基因管理局仅仅对随机变异进行编辑,不如说它按一些计划表自己产生出变异。基因组为特定目的会创造出突变。定向突变可以刺激自然选择的盲目进程,把后者带出泥潭,将其推向越来越复杂的状态

在某些特定的条件下,这种细菌会自发产生所需的突变来直接响应环境压力。

不管是什么导致了这种定向突变,“实际上,都提供了一种获得性遗传机制”——这简直就是赤裸裸的达尔文理论的对手拉马克的观点。

19.7遗传
在性活动中,两条染色体不是一丝不挂地重新结合,而是被包裹在一个巨大的卵细胞里面。这个塞得满满的卵细胞对于如何重组基因拥有很大的话语权。蛋黄似的细胞里充满了各种蛋白因子和类激素介质,并且受其自身非染色体DNA[8] 的控制。当染色体基因开始分化的时候,卵细胞就会指导它们、控制它们、为它们确定方向,并精心策划宝宝的构造。毫不夸张地说,最终诞生的生物体在一定程度上受卵细胞的控制,并非由基因来完全掌控大局。

19.8卵细胞对染色体的基因的影响
和绝大多数有核细胞一样,每一个生物卵细胞都会在染色体之外携带好几个DNA信息库。令正统理论最感困扰的事情在于,卵细胞有可能在内部DNA与染色体DNA之间不断交换编码信息。
躯体的成形过程对于人工进化的缔造者们来说有两个借鉴之处:第一,成熟机体的变异,受到胚胎期母体卵细胞环境的间接作用,以及遗传基因的直接作用。在这一过程中,一些非常规信息大有可能经由某些控制要素或细胞内DNA交换而从细胞(确切说是母体细胞)流向基因。

19.9进化的跳变
要成长为新的物种,就要历经所有你不会再扮演的角色。 进化是善于创造的,也是保守的,总在凑合着用些现成的东西。生物极少会从头来过。过去是它的起点,而过去的点滴精华都凝结在生物体的发育过程中。

改动胚胎的早期发育过程,实际上是对时间的大不敬。在胚胎发育过程中突变出现得越早,它对生物体的影响就越剧烈。这同时也削弱了那些用以对抗失败的约束。因此,发育过程中来得越早的突变,越不可能成功。换句话说,生物体越复杂,就越不可能出现早期变异。

微小的改变会在发育过程中被放大。躯体的形成就是以这种方式跳过了达尔文的渐进模式。

19.10进化是跳跃式前进的
高兹史密特究其潦倒的一生都在证明一件事情:仅仅将微进化(从红玫瑰到白玫瑰)推而广之是无法解释宏进化(从虫子到蛇)的。通过研究昆虫的发育他得出结论:进化过程是跳跃式前进的。
“胚胎早期的微小改变,经过生长过程的累积之后,会在成体身上产生巨大的差异……如果我们不能通过发育速率中的微小变化来引发间断式变异的话,那么最重要的进化过渡根本就不可能完成。”

绝大多数物种的化石都具有两个与渐进论相抵触的特征: ◎停滞不前。绝大多数物种活跃在地球上的那段时间内,都没有呈现出有指向性的改变。它们在化石记录中初现的样态,跟它们在化石记录中消亡时的样态,看起来几乎完全一样…… ◎突然出现。在任何一个地域,一个物种并不是通过自其祖先以来的稳步变化而出现的;它是一下子就出现的,而且一出现就“完全成形”。

因而,假如我们发现进化实际上是以量子阶跃的方式进行的话,也就没有什么好大惊小怪的了。生物体的既有组成部分,可以组合成这种或那种形态,但绝不能组成这两者之间的所有形态。整体所具有的层级架构的本质,阻碍了整体去到达理论上所有可能到达的状态。与此同时,整体所具有的这种层级结构,也赋予了它完成大规模迁跃的能力

19.12成功进化的3种约束
当基因组被竞争压力拉出其正常轨道时,它必须在物质层面上重组它的关联模式,以维持稳定。用控制论的话来说就是,它必须使自己落在另一个具有整体性和内敛性并且内稳的吸引域 [10] 中。
生物体在问世之前,在直面竞争与生存的自然选择之前,就已经两度受制于其内部选择——一个是来自于基因组的内部约束,另一个则来自于躯体所遵循的法则。在生物体真正同自然选择打交道之前,它还面临来自第三个方面的内部选择。一个被基因接受并随后被躯体接受的变化,还必须被种群接受。只发生在单体身上的变异,即使再出色,也必然随着单体的死亡而灰飞烟灭。除非包含变异的基因能够在整个种群中扩散开来。种群(或者同类群)具有自身的内敛性和整体性,并呈现出一种整体的涌现行为,恍若是一个庞大、内稳的系统——种群即个体。

19.13生物空间的稀疏性
在可能的生物空间 [13] 中,能存活的生命体其分布可能非常之稀疏,以至于这个空间绝大部分都是空荡如也。在这个充满失败的空间里,可存活的生命形式可能聚集在一小片区域内,或是汇聚在几条蜿蜒穿行的路径上。

19.14深度进化总结
深度进化不一定就比自然选择神秘多少。他们把每一种动态共生、定向变异、跳变论或者自组织理论都看做是一种机制,一种从长远来看,作为对达尔文那无情的选择过程的补充,能促使进化不断革新的机制。
共生——便捷的信息交换以允许不同的进化路径汇聚在一起 ◎定向变异——非随机变异以及与环境的直接交流和互换机制 ◎跳变——功能聚类、控制的层级结构、组成部分的模块化,以及同时改变许多特性的适应过程 ◎自组织——偏向于某种特定形态(譬如四轮)并使之成为普遍标准的发展过程

21.1热力学3大定律的背后
能量守恒,能量转换有方向性,绝对零度是能量参考系

不能把热量从低温传递到高温而不产生影响
卡诺第二定律,所有规律中最残酷的法则:所有秩序都终归于混沌,所有火焰都将熄灭,所有变异都趋于平淡,所有结构都终将自行消亡。

21.2生命负熵
第二种趋势与此平行,但产生与此相反的效果。它在热量消散前(因为热必会消散)将其转移,在无序中构建有序。它借助趋微之势,逆流而上。生命是熵的互补力量, 它强迫这些正在慢慢消散的热和秩序在局部形成更好的秩序。

21.3进化轮第二法则
如果存在一个生命的第二法则——上升流,那么这个潮流的方向究竟指向哪里?如果进化的确有一个方向,那么它究竟会有一个什么样的方向?生命到底是在进步,还是仅仅在盲目地徘徊?也许进化只不过有个小斜坡,使之看上去有某种趋势,并且可以部分地预测。

斯图亚特·考夫曼在适应系统中所见的自组织的无序之有序,和罗德尼·布鲁克斯在机器中培育出的带有目的性的目标,是否足以说明,不管进化是如何发生的,它都会进化出它自己的目标和方向?

目的性可以理解为“驱使”或“势头”,而非一种自觉的、有意的目标或计划。

21.4进化的趋势
而当人工进化踏上漫漫征途时,这7个趋势也将伴随其左右。它们是:不可逆性、递增的复杂性、递增的多样性、递增的个体数量、递增的专业性、递增的相互依存关系,以及递增的进化力。

不可逆性:要放弃来之不易的属性并不容易。这是一个文明演进的公理:已经发明的技术就再也不能当作从未发明过。某个活系统一旦进化出了语言或者记忆,就再也不会放弃它。

复杂性:尽管几乎每个人都清楚地知道进化朝着更加复杂的方向发展,但是我们手头真正言之有物的有关复杂性的定义却少之又少。

递增的多样性:生命史的惊人事实就是它标记着多样性的锐减,以及继之而来的在少数幸存物种中激增的多样性”。取其10种,弃其9种,而剩下的第10种确实产生了巨量的变异,例如甲虫。

专业化:生命从一个简单的、不明确的、未定型的创意开始,随着时间的推移,渐渐稳定形成一大群精确的、稳固的、机器般的结构。进化朝着更细化的方向迈进。

递增的相互依赖:社会化的加深正是生命递增的相依共生关系的另一种形式。人类正是一个越来越依赖生命而不是非生物的极端例子。

递增的进化力:道金斯提出了更高一层的自然选择,“它所偏爱的类型,不仅仅能成功地适应环境,而且能朝着既定的方向进化,或者只要保持进化就好”。换言之,进化不仅选择生存力,也选择进化力。

21.6 进化简史
对进化之进化可作如下概述。起初,进化启动了各色自我复制,产生足够的数量以诱发自然选择。一旦数量膨胀,定向的突变就逐渐重要起来。接下来,共生开始成为进化的主要推动者和振荡器,依靠自然选择产生的变化来滋养。随着形态的增大,对形态的制约开始形成。随着基因组长度的增长,内部选择开始控制基因组。随着基因的集结,物种形成和物种级别的选择即行闯入。由于生物体拥有了足够的复杂性,行为和肢体的进化显露出来。最终,智力萌芽,拉马克式的文明进化取而代之。随着人类引入基因工程和自编程的机器人,地球上的进化将继续进化。

21.7进化的单位
生命的历史,就是一个由各种进化组成的进程,而这些进化则是由不断扩展的生命复杂性所驱动的。由于生命变得越来越层次化——基因、细胞、组织、物种,进化也改变了其对象。

21.8进化的目的
进化的方向是实现自我。 生命是进化的培养基。生命提供了生物组织和物种的原材料,从而使进化得以进一步进化。没有浩浩荡荡日益复杂化的生物,进化就无法进化出更大的进化力。所以,进化产生复杂性和多样性以及成百上千万的存在,从而为自己拓展空间,使进化成更强大的进化者。

意识与逻辑

10.意识的涌现丹尼特正在慢慢地说服很多心理学家,让他们相信,意识是从一个由许许多多微渺而无意识的神经环路构成的分布式网络中涌现出来的。

11.意识流的并发竞争解释并没有什么意识之流。意识的苗头往往是多发并存的,或者说,有许多不同的意识流,没有哪一条是被单独选出来的。”心理学家先驱威廉·詹姆斯 在1874年写道,“……思维在任何阶段都像是一个舞台,上演着各种并发的可能性。意识在这些可能性互相比对的过程中起起落落,选此即抑彼……”明斯基认为,智能活动产生于“几乎各自离散的个体,为了几乎各自独立的目的而结合的松散的联盟”。胜者留存,败者随时间而消逝。

17.单调乏味会使心智错乱据传,一些人在极度无聊的时候出现了诡异的幻觉。雷达观测员常常报告发现了信号,而雷达屏幕上却空空如也;长途卡车司机会突然停车,因为他看到搭便车的旅行者,而路上连个鬼影都没有。在这个与世隔绝的、寂静的棺材里呆了两天后,几乎所有的受测者都没有了正常的思维。注意力已经土崩瓦解,取而代之的是虚幻丛生的白日梦。更糟糕的是,活跃的意识陷入了一个不活跃的循环。ps:老和尚入定呢?身体是意识乃至生命停泊的港湾,是阻止意识被自酿的风暴吞噬的机器。ps:我觉得不是身体,而是身体+境遇

5.1网状因果希腊哲学家痴迷于链式的因果关系,研究如何沿因果链条溯本追源,直至找到最初原因。这种反向倒推的路径是西方逻辑的基础,即线性逻辑。而蜥蜴-镜子系统展示的是一种完全不同的逻辑——一种网状的因果循环。

5.2空间相关性在物质世界中,一件事对另一件事的影响随两者之间的时间或空间距离的增大而衰减。因此,我们在研究木星卫星的运行轨道时不去考虑水星的影响。这是物体和作用力这一对相互依存的概念所遵循的基本原则。在计算科学中没有类似于距离这样的概念。没有哪个存储单元比别的存储单元更不易受影响。

7.6从控制反过来看自我
自我从何而来?控制论给出了这样让人摸不着头脑的答案:它是从它自己那里涌现出来的。而且没有别的法子。进化生物学家布赖恩·古德温 [29] 告诉记者罗杰·卢因 [30] :“有机体既是它自己的因也是它自己的果,既是它自己固有的秩序和组织的因,也是其固有秩序和组织的果。自然选择并不是有机体的因。基因也不是有机体的因。有机体的因不存在。有机体是自我能动派。

7.7从心理角度看循环因果
按照荣格 [32] 的说法,衔尾蛇是人类灵魂在永恒概念上的最经典的投影之一。这个咬着自己的尾巴的蛇所形成的环,最初是作为艺术装饰出现在埃及雕塑中。而荣格则发展出一套观点,认为那些在梦中造访人类的近乎混沌的形形色色的意象,容易被吸附在稳定节点上,形成重要且普适的图像。
这不就是量子的概念吗?
咬住尾巴的衔尾蛇是对自我的一种象征性的图解。圆圈的完整性就是自我的自我控制,这种控制既来源于一个事物,也来源于相互竞争的部件。

7.8自我与我
荣格派学者认为,自我(self)其实应该被看成是“我(ego)的意识的诞生前的一种原始心理状态”,也就是说,“是那种原始的曼达拉状态 [33] ,而个体的我(ego)正是从这种心灵状态中产生出来的”。
所以,我们说一个带着恒温器的炉子有自我,并不是说它有一个我。所谓自我,只不过是一个基础状态,一个自动谋划出来的形式,而假如它的复杂性允许的话,一个更为复杂的我便藉此凸显出来。

7.9活系统
一个活系统就是一个“缓慢地进行自我复原的同义反复”。他的意思是说,如果系统受到干扰或者干涉,它的自我就会“朝向同义反复寻求解决”——沉降到它的基础自指状态,它那个“必要的矛盾”中。
每一个自我,都是一场试图证明自己特性的论争。恒温系统的自我内部总是在争论到底该调高还是调低炉子温度。

7.10本我与朝我的解释
一个系统,就是任何一种能够自说自话的东西。而所有的有生命的系统以及有机体,最后都必然精简为一组调节器,即化学路径和神经回路,其间总是进行着如此愚蠢的对话:“我要,我要,我要要要;不行,不行,你不能要。”

17.3大脑并行计算
尽管大脑像并行机器一般运作,人类意识却无法并行思考。这一讽刺性的事实让认知科学家们百思不得其解。人类的智慧有一个近乎神秘的盲点。我们不能凭直觉理解概率、横向因果关系及同步逻辑方面的各种概念。它们完全不符合我们的思维方式。我们的思维退而求其次地选择了串行叙述——线性描述。

21.5 知识与智慧
马文·明斯基注意到在儿童心智的发育中存在着“类似对改变其自身的规则做出改变的力量”。明斯基认为:“仅仅依靠不断地积累越来越多的新知识,心智不能真正很好地成长。它还必须开发出更新更好的运用已有知识的方法。这就是派普特原理:心理发育过程中的一些最关键的步骤,不仅仅建立于获取新技能的基础之上,而且建立于获取运用已知知识的新的应用方法的基础之上。”

经济、文化、组织

7.4在经济领悟的应用
奥地利哈耶克和其他的奥地利学派的经济学家在20世纪20年代论证说,一个单一的变量——价格——可以用来对其他所有资源分配变量进行调节。按照这种学说,人们就不用在意到底每个人需要多少块香皂,也不用在意是不是应该为了房子或者书本去砍伐树木。这些计算是并行的,是在行进中进行的,是由下而上、脱离了人的控制、由相互联结的网络自主自发的。秩序会自发形成。

价格在自由市场里是供需双方自由贸易的结果,是表现,而在其它市场里,控制价格确实是一种控制

10.4工业生态
假如你追踪一个铁粒子由地底挖出到送入工业食物链的过程,就能看到它循行的是一个纵横交错的回路。第一轮,这个粒子可能用在一辆雪弗兰上;第二轮,它可能登陆某个中国台湾产的船壳;第三轮它或许又定型于某段铁轨;第四轮可能又上了一条船。每一种原料都在这样一个网络内徜徉。糖,硫磺酸,钻石,油料,各循不同的回路,在各循各的网络途中接触各种各样的机器,甚至可能再度还原为其作为元素的基本形式。 生产原料从机器到机器的、缠绕在一起的流动可以看作是一个联网的群落——一个工业生态。

10.5仿生态
福罗什和提布斯将工业生态的概念扩大,涵盖了机器网络以及由它形成的环境。在提布斯看来,其目标是“仿造自然系统的整体设计理念来塑造工业整体化设计”,以使“我们不仅能改进工业的效率,还能找到更令人满意的与自然接轨的途径”。

10.6为复用而设计
从生态学角度看,为分解而设计的产品既可以做到高效的处理或维修,也可以实现高效的组装。设计得最好的汽车,不仅仅开着顺心,造价低廉,而且一旦报废也应该很容易地分解开来成为通用的部件。

10.7闭环制造
哥本哈根往西80英里,当地的丹麦企业已经孕育了一个工业生态系统的雏形。十多家企业以开环形式合作处理邻近厂家的“废料”,在他们相互学习如何再利用彼此的排出物的同时,这个开环逐步“收口”。一个燃煤发电厂向一个炼油厂提供蒸汽轮机产生的废热(以前此废热排放至一个附近的峡湾)。炼油厂从其精炼工序中所释放的气体中去除污染成份硫,并将气体提供给发电厂作燃料,发电厂每年可以省煤3万吨。清除出来的硫卖给附近一家硫酸厂。发电厂也将煤烟中的污染物提取出来,形成硫酸钙供石棉水泥板公司作为石膏的替代品。煤烟中清出的粉尘则送往水泥厂。发电厂其他多余的蒸汽用来给一家生物制药厂还有3500个家庭以及一个海水鳟鱼养殖场提供暖气。来自渔场的营养丰富的淤泥和来自药厂的发酵料用来给本地农场作肥料。或许在不久的将来,园艺温室也会由发电厂的废热来保温。

这跟产业链的想法有所不同

11.2在线化
全世界牛仔服装供应商李维斯 [6] 已经把它的一大部分实体都网络化了。持续不断的数据从它的总部、39个制造厂和成千上万的零售商那里流出,汇聚成一个经济上的超级有机体。当美国巴法罗的商场有人买进石洗布的时候,这些销售数据就会在当夜从这个商场流入李维斯的网络中。网络会把这笔交易和其他3500个零售店的交易汇总在一起,然后在几个小时之内生成一条增加石洗布产量的指令给位于比利时的工厂,或者向德国的工厂要求更多的染料,或者向美国北卡罗莱纳州的棉花厂要求增加牛仔布的供应。

如果你用网络把计算机辅助设计工具与计算机辅助制造联结在一起的话,那么你能做到的就不仅是灵活地控制颜色,而且可以灵活地控制整个设计过程。你可以用很短的时间先设计出一个样式,然后少量地生产和投放,再根据反馈快速地进行修改,一旦成功则迅速增加产量。整个周期只需要几天的时间。

11.3 网络化
这意味着,机器模具本身必须是可以调整的,物料分送的规划必须能在咫尺之间灵活转向,所有的劳动力都必须协调成一个整体,包装供应商不能有任何中断,同时货运线也必须是可调的,市场营销也必须同步。而所有这些,都是通过网络来完成的。

11.4 公司组织的网络化
一个纯粹网络化的公司,应该具有以下几个特点:分布式、去中心化、协作以及可适应性

分布式——商业不再是在某个单一的地点进行。它在几个不同的地方同时发生。一个身量巨大的全球性企业,如果按照完全网络化的方式进行组织,可以被看成是一个由细胞组成的系统,每个细胞都由一打左右的人员构成,包括许多由12个员工掌管的迷你工厂、一个12个人构成的“总部”、成员为8人的利润中心,以及由10个人运作的供应部门。

去中心化——如果你只有10个人的话,怎么才能完成一个大规模的计划?
只能通过依赖别的团队,而自己只专注于自己精通的话。不不断加强连接
网络使得外包成为一个具备可行性、可盈利性、且具有竞争力的选择。一个被分派出去的任务,可能要往复好几次,直到最终落实到某个规模虽小但结构紧凑且能够专注、高效地完成任务的团队的肩膀上。通常情况下,这些团队可能是一个独立的公司,也可能是某个自治的分支机构。

协作性——将内部工作网络化具有重大的经济意义,以至于有时某些核心功能甚至会外包给公司的竞争者,达到互惠互利。
每个人都在寻找可以和自己形成共生关系的合作伙伴,甚至是和自己能形成共生关系的竞争者。
也许到了某一天,那种完全自给自足的公司会变得非常少见。公司这个概念的寓意,也会从那种紧密耦合、被严格约束的机体,变为一种松散耦合、松散约束的生态系统。

适应性——从产品到服务的转移是无可避免的,因为自动化会不断降低物质复制所需的成本。
整张网络同时在行动。营销、设计、制造、供应商、购买者都被卷入到创造一个成功产品的过程中。产品设计意味着要让营销、法律和工程团队同时都来参与,而不是像过去那样顺序完成。
一个产品还可以记住你是否在看了一眼标价后就走开了——这可是店主和制造商很感兴趣的信息。无论如何,广告商可以吹嘘说:至少你抬眼看了。当货架上的商品获得自己或相互之间的注意,并且和消费者产生互动的时候,它们会迅速迸发为完全不同的经济形态。

可以发现这段对于公司的看法,与曾鸣的《智能商业》积极为相似

11.5 公司软件化
当各种公司取消实体进入某种巴洛式的赛博空间之后,它们就具有了某种类似于软件的特点。无污染、无重量、快速、有用、可移动而且有趣。但同时也可能变得非常复杂,充满了没人能查明的烦人的小毛病

11.6 复杂系统的非连续性
计算机软件、分布式网络以及绝大多数的活系统都是非连续的系统。在复杂的适应性系统中,你根本不可能依赖插值函数来判断系统的行为。

20.7无形的手
达尔文所说的物竞天择和亚当·斯密提出的国富论何其相似。二者都有一双无形之手。

我跟考夫曼提到了一个有争议的想法:在任何社会中,只要交流和信息连接的强度适中,民主就必然会出现。在思想自由流动并产生新思想的地方,政治组织会最终走向民主这个必然的、自组织的强大吸引子。

民主是允许相冲突的少数族群之间达成相对流畅的妥协的机制。它避免了族群们陷入局部有利但全局不利的解决方案。”

22.1预测未来问题
我之所以探询预测未来的问题,是因为预测是控制的一种形式,是一种尤其适合分布式系统的控制形式。通过预期未来,活系统能够改变其姿态,预先适应未来,以这种方式掌控自己的命运。

22.2活系统的性质
几乎可以明确地说,“活系统”——狮群、股票市场、进化中的种群、智能等,都是一个高维系统,都是不可预测的。它们所具有的那种混乱的、递归式的因果关系,各个部分之间互为因果的关系,使得系统中的任何一个部分都难以用常规的线性外推法推断未来。

22.3混沌系统
当极小的误差(由有限的信息引起的)持续到非常遥远的未来的时候,将会汇聚成极为严重的误差。
混沌理论证明了这些高维的复杂系统——比如天气、经济、行军蚁,当然还有股票价格,其本质上是无法预测的。
根据混沌定律,那些看起来完全无序的东西,在短期内可以预测到。你可以做出近期预测。
即“混沌”和“随机”是两回事。“在混沌中存在着秩序,”法默说。

帕卡德把这些区域称为“可预测性范围”或者“局部可预测性”。换句话说,不可预测性在整个系统中的分布并不是统一的。绝大多数时间,绝大多数复杂系统也许都不能预报,但是其中一小部分也许可以进行短期预报。

22.4看的远并不好
法默和同事们待过的圣塔菲研究所最近的研究就解释了“看得远并不意味着看得好”。当你埋首真实世界的复杂性时,少有清晰界定的选择,不完全的信息又蒙蔽了所有的判断,这个时候,要评判过于遥远的选择就达不到预期的目的了。

无论是“深思”程序,还是人类的象棋大师,其实都不需要看得太远就能下出非常好的棋。这种有限的前瞻就是所谓的“有正面意义的短视”。一般来说,这些大师会首先纵览盘面的局势,只对各个棋子下一步的走法做一个预测。接下来,他们会挑选出最可能的一种或两种走法,更深入地去考虑这些走法的后果。

22.5网络中的有序性
莫迪斯提出了在人类互动的更大网络中建立有序性的三种类型。每一种都在特定的时间构成了一个可预测性范围。他把这一研究应用到经济学、社会基础设施和技术领域之中,而我相信,他的发现同样适用于有机系统。莫迪斯的三个范围是:不变量、成长曲线和循环波。

不变量:对所有优化其行为的有机体来说,自然的、无意识的趋势逐渐向其行为中注入了随时间推移极少变化的“不变量”。

成长曲线:所有成长的东西,都拥有几个共同的特点。其中一个,就是形状为S形曲线的生命周期:缓慢地诞生、迅速地成长、缓慢地衰败。

循环波:自然界的循环现象能给运行其间的系统注入循环偏好。

22.6 预测行为改变预测结果
在一个靠预期取胜的游戏中,如果所有人都分享这个预测的话,准确的预测就不会提供赚钱的机会。预测公司真正能够拥有的,只不过是时间上的领先。只要法默的团队开发某个预测性范围挣到了大钱,那么其他人都会冲进来,多少模糊了模式,大多数情况下,会把挣钱的机会拉平。在一个股票市场中,成功会激发起强烈的、自我取消的反馈流。

22.7反馈与前馈
一个系统——不管是有机体、企业、公司、还是计算机程序,之所以花费精力把过去发生的事情反馈到现在,是因为这是系统在应对未来时比较经济的做法。因为,要想预见未来,你就必须了解过去。沿着反馈回路不断冲击的过去,给未来提供信息,并控制着未来。

把发生在时空远处的信息,前馈到当下。归根结底,揭示未来不仅仅是人类的向往,也是任何有机体,也许还是任何复杂系统所拥有的基本性质。有机体存在的目的就是揭示未来。

23.1 科学的发展也是分布式系统
科学知识是一种平行的分布式体系。没有中心,没人处于控制地位。其中容纳着无数智慧的头脑和分散的书籍。它也是一个网络,一个事实和理论互相作用互相影响共同进化的体系。
科学知识的构造,因为看上去它似乎凹凸不平、厚薄不匀。我们共同了解的很多科学知识都发源于一些小的领域,而在这些领域之间却是大片无知的荒漠。图景:大片无知的荒漠中横亘着一个个自成体系的知识山峰。

23.2科学发展规律
他们通过进行着微小变革的模型来解释科学如何发展。按此观点,科研学者建立起一种理论来解释事实(比如,因为可见光是一种波,所以能生成彩虹),而理论本身又能指引寻找新的事实。(你能弯曲光波吗?)又是收益递增法则,把新发现的事实整合进理论体系,使得理论更加有力也更加可靠。偶尔,科学家们会发现不易用理论解释的新事实(光有时的表现像粒子)。这些事实被称为异常事件。当与起支配作用的理论一致的新事实不断涌现时,最初的异常事件就被搁置不理。到了某个时刻,经验证,累积的异常事件太大、太讨厌或太多了,再也无法忽略了。这时,必然会有一些激进分子提出变革性的另类模型来解释异常事件(比如,光的波粒二象性)。旧的理论被扫地出门,新的理论迅速占据优势地位。

新的理论至少在一段时间内占居优势地位,直到它们自身也僵化起来并对后起的异常事物麻木不觉,最后自己也被赶下宝座。

科学史上真正的发现,只能“从了解异常事物开始”。进步源自对反面意见的认可。

23.3 记录方式与思维方式的关系
黑板让使用者可以再三修改、擦除,从而促进了随心所欲的思考以及自发行为的产生。用羽毛笔在写字纸上书写要求你小心翼翼、注意语法、整洁、克制思考。印刷的页面征集的是反复修改过的草稿,还需要打样,复核,编辑。而超文本激发的是别样的思考方式:简短的、组合式的、非线性的、可延展的以及合作的思考模式。正如音乐家布莱恩·伊诺在写伯尔特的作品时写到的,“(伯尔特的理论)是说,我们组织写作空间的方式,也就是我们组织思想的方式,最终成为我们考虑世界必须组织自身的方式。”

网络结出的硕果远殊于印刷书籍或餐桌闲谈。文本是一次与无数参与者的理智交谈。由因特网的多维空间激发出来的思想方式,趋向于培育非教条的实验理念,培育妙语连珠的全球化观念,培育跨学科的综合体以及天马行空又充满感情的反响。许多参与者之所以喜欢网上写作而非写书,是因为网上写作采用的是对等的对话方式,是因为它的无拘无束、畅所欲言,而不是因为它的一丝不苟、矫揉造作。

23.4 分布式的社会
统一的大众市场(工业化迅猛发展的后果)已经分崩离析,让位于小型利基的网络(信息化潮起的结果)。这种碎片的集合体是我们现有的唯一完整无缺的方式。商业市场、社会习俗、精神信仰以及种族划分和真理本身的残片分裂为越来越细小的碎片,构成了这个时代的特征。我们这个社会是碎片混战的场所。这几乎就是分布式网络的定义。
我们的文化处于由分层次的社会秩序过渡到我们或许可以称为‘网络文化’的社会秩序的最后阶段。

人们如今身处高度连接又深度分裂的社会,不可能再依赖中心标准的指导

控制与网络

8.包容架构布鲁克斯借此阐释了一个普适的生物原则——一个神律:当某个系统能够正常运转时,不要扰乱它;要以它为基层来构建。在自然体系中,改良就是在现存的调试好的系统上“打补丁”。原先的层级继续运作,甚至不会注意到(或不必注意到)其上还有新的层级。最底层的行为并不会被扰乱。无目的漫游模块一旦被调试好,并且运转良好,就永远不会被改变。就算这个无目的漫游模块妨碍了新的高级行为,其所应用的规则也只是会被抑制,而非被删除。代码是永远不变的,只是被忽略了而已。由于上一层在下一层基础之上创建,这样当上层出现故障,只会传播给更上一层的相关模块,底层的运行仍然正常习惯的养成,一点一点的形成。生活生态。学习过程等。

9.分布式控制方法以下是由布鲁克斯的移动机器人实验室开发出来的一套普适分布式控制方法: ◎先做简单的事。 ◎学会准确无误地做简单的事。 ◎在简单任务的成果之上添加新的活动层级。 ◎不要改变简单事物。 ◎让新层级像简单层级那样准确无误地工作。 ◎重复以上步骤,无限类推。

12.自下而上的分布式控制理论
几个质数相乘得出答案很容易,小学生就会做。但要对一个大数做分解质因数,最超级的计算机也会卡壳。自上而下的控制就如同将乘积分解成因子一样困难,而用因子来得到乘积则非常容易。必须从简单的局部控制中衍生出分布式控制;必须从已有且运作良好的简单系统上衍生出复杂系统。

13.分布式的信息传递行为代理之间并没有明确的信息交流。所有的交流都是通过观察其他代理的动作在外界环境里留下的痕迹和影响而得以进行的。”利用外部世界作为分布式部件间的交流媒介。”一个反射模块并非由另一个模块来通知它做什么,而是直接感知外部世界反射回来的信息,然后再通过其对外部世界的作用把信息传递给他人。“

14.利用现实世界的反馈实现交流,大脑里的个体们通过外部世界进行沟通来竞争机器人的身体资源。参与市场活动的个体之间并没有交流,他们只是观察别人的行动对共同市场所造成的影响(不是行动本身)

15.人造物的经验◎递增式构建——让复杂性自我生成发展,而非生硬植入◎传感器和执行器的紧密耦合——要低级反射,不要高级思考◎与模块无关的层级——把系统拆分为自行发展的子单元 ◎分散控制——不搞中央集权计划 ◎稀疏通讯——观察外部世界的结果,而非依赖导线来传递讯息

16.无躯体则无意识从历史过程可能如此,但如果意识诞生之后呢?布鲁克斯认为只有创造出必须以真实躯体而存活的机器人,让它们日复一日地自食其力,才有可能发掘出人工智能或真正的智慧。

7.1能量与信息
即使把最简单的自动电路,比如说反馈回路,移植到电子领域中,也花了世界上最优秀的发明家很长的时间。之所以会如此拖延,是因为电流从被发现的那一刻起,就首先被看成是能量而不是通信工具。
发送一个信号所需的能量小得令人不敢相信,以至于电必须被想象成某种完全不同于能量的东西。

7.2负反馈回路
1929年8月,贝尔实验室的电话工程师布莱克 [10] 才调校出一条电子反馈回路。布莱克当时正在努力为长途电话线路寻找一种能够制造持久耐用的线路中继放大器的方法。
早期一个老化的中继器不单会把电话信号加以放大,还会错误地把任意拾得的各种频率的细微偏差与电话信号相混合,直到这些不断膨胀的错误充满整个系统,将系统彻底摧毁。所以,这里就需要某种类似于海伦的调节装置的东西,能够产生约束主信号的反向信号,缓冲不断重复的循环所带来的影响。幸好布莱克设计出了一个负反馈回路,它的作用就是用来抵消放大器的正回路所产生的滚雪球效应。

控制轮在二战时期得到了发现,比如拦截炮弹,感知、计算、控制一气呵成。

这些回路塔会不断地给我们带来诧异,因为沿着它们流转的信号,会无可避免地相互交叉自己的路径。A引发B,B引发C,C又引发A。以一种直白的悖论形式来说:A既是原因,又是结果。控制论专家海因茨·冯·福斯特把这种难以捉摸的循环称为“循环因果”

7.3钢板厚度控制
如果所有的变量都是紧密相关的,而且如果你真正能够最大限度地控制其中的一个变量,那么你就可以间接地控制其他所有变量。
通过感知回路来测量现状,然后计算差额,通过调节可控变量,弥补差额

7.5大型网络延迟带来的摇摆
在一个串接的回路串中,每增加一个回路,都加大了一种可能:即在这个变得更大的回路中漫游的信号,当回到其起点的时候,却发现事情早在它还在回路中游荡的时候就已经发生了根本性的改变。而作为回应,最后一个节点倾向于发出更大的修正作为补偿。可是,这样一种补偿性的指令,同样会因为所需穿越的节点太多而被延迟,于是它抵达时也错过了移动标记,就又产生了一个无缘无故的修正。
每次对方向的修正,总是会矫枉过正,超过上一次的过度反应。从一个过度反应摆荡到下一个过度反应,努力寻求安稳。

7.11控制简史
3层控制都是靠逐渐深化的反馈和信息流推进的。

能量控制
由蒸汽机所引发的能量控制是第一阶段。能量一旦受到控制,它就达到了一种“自由”。随着我们达成某一目标所需要的卡路里(能量)越来越少,我们那些最为重大的技术成果,也不再朝向对能源做进一步控制。

物质控制
我们现在的成果是通过加大对物质的精确控制得来的。而对物质的精确控制,就是控制体制的第二阶段。采用更高级的反馈机制给物质灌输信息,就像计算机芯片的功用那样,使物质变得更为有力,渐渐地就能用更少的物质做出没有信息输入的更大数量物质相同的功。

信息控制
控制革命的第三阶段,是对信息本身的控制。从这里到那里,长达数英里的电路和信息回路执行着对能量和物质的控制,而这些线路和信息回路也在不经意间让我们的环境充满了信号、比特和字节。这个未受约束的数据狂潮达到了有害的水平。我们产出的信息,已经超过了我们能够控制的范围。我们所曾憧憬的更多的信息,已经成为事实。但是,所谓更多的信息,就好像是未受控制的蒸汽爆炸——除非有自我的约束,否则毫无用处。

7.12失控
我们正在以所能达到的速度,尽可能快地把我们这个已经建好的世界装备起来,指令它自我治理、自我繁衍、自我认知,并赋予它不可逆转的自我。自动化的历史,就是一条从人类控制到自动控制的单向通道。其结果就是从人类的自我到第二类自我的不可逆转的转移。
在一个练达、超智能的时代,最智慧的控制方式将体现为控制缺失的方式。投资那些具有自我适应能力、向自己的目标进化、不受人类监管自行成长的机器,将会是下一个巨大的技术进步。要想获得有智能的控制,唯一的办法就是给机器自由。

10.1家域网
这个家域网——如同目前一些实验室中工程师们所设想的那样,是一个通用接口,遍布于每个家庭的每个房间。每一样东西都被接入进来:电话、电脑、门铃、暖炉,吸尘器,都接入这个网络,从中获取电力和信息。

11.1联结与计算
我意识到计算机的未来不在数字而在于联结——一百万台相互联结的苹果II型电脑所产生的力量,要远远超过一台价值数百万美元、用最精心的方式调制出来的、孤立的超级计算机。

11.7 软件流程
通常,软件的编制遵循三个中心化的关键步骤。首先设计一个全景图,然后用代码实现细节,最后,在接近项目尾声时,将其作为交互的整体来进行测试。而在零缺陷质量的设计流程中,整个软件编制过程不再是几个大的关键步骤,而是被分散成上千个小步骤。软件的设计、编写和测试工作每天都在成百个小工作间里进行着,每个小工作间里都有一个人在忙碌着。

11.8 零缺陷目标
单靠这些小步骤并不能得到零缺陷的软件。“零缺陷”的目标隐含着一个关键的概念区分。所谓缺陷,是指被交付出去的错误;而在交付之前被修正的错误,不能算是缺陷。按新乡重夫的说法:“我们绝对不可能避免错误,但是我们可以避免错误成为缺陷。”因此,零缺陷设计的任务就是尽早发现错误,尽早改正错误。

11.9 模块化与可靠性
进一步来说,当程序小到某个阈限以下之后,就可以达到完全没有错误的状态。IBM为它们的IMS系列所写的代码,就是以模块化的方式编制的,其中有3/4的模块达到了完全没有缺陷的状态。具体来说,就是在425个模块中,有300个是完全没有错误的。而在剩下的125个有错误的模块中,有超过一半的错误集中发生在仅仅31个模块上。从这个意义上说,程序编制的模块化,就是程序的“可靠化”。
面向对象的程序使软件具备了中等程度的分布式智能。它和其他分布式的存在一样,有一定的抗错性,能够(通过删除对象)快速修复,并且通过有效单元的组装来实现扩展。

11.10 错误的扎堆出现
包含这些错误的模块充分说明了软件的一个特性——错误总是扎堆出现的。你发现的下一个错误,极有可能出现在你已经找出了11个错误的模块里,而那些从未出过错误的模块,则可能会一直保持不败金身。”
另一方当你发现一个错误的时候,也就意味着还有另外一堆你没看见的错误在什么地方等着你。

不要把钱花在错误百出的代码上,抛弃它!重写一段代码的代价和修补一个错误百出的模块的代价相差无多。如果软件的某个单元的错误率超过了一定的阈限,就把它扔掉,另找一个开发人员来重写代码。

11.11 冗余设计
自然亦是如此:它通过牺牲简洁性来换取可靠性。自然界中存在的神经元回路,其非最优化程度始终令科学家们瞠目结舌。研究小龙虾尾部神经细胞的科学家们揭示了这种回路是多么令人震惊地臃肿和丑陋。只要花点功夫,他们就能设计出一种紧凑得多的结构。不过,尽管小龙虾的尾部回路要比它真正需要的冗余很多,却是不会出错的。 零缺陷软件的代价就是它的“过度设计”,超量建设,多少有点浮肿——永远不会处在泰德和他的朋友所经常逗留的那种未知的边缘。它是用执行效率来换取生产效率。

11.12全球意识
我有一种感觉,从网络文化中还会涌现出一种全球意识。这种全球意识是计算机和自然的统一体——是电话、人脑还有更多东西的统一体。这是一种拥有巨大复杂性的东西,它是无定形的,掌握它的只有它自己那只看不见的手。我们人类将无从得知这种全球意识在想什么。这并不是因为我们不够聪明,而是因为意识本身就不允许其部分能够理解整体。全球意识的独特思想,以及其后的行为,将脱离我们的控制,并超出我们的理解能力。因此,网络经济所哺育的将是一种新的灵魂。

12.1密码与流动市场
正如印刷术削弱了中世纪行会的权力,改变了社会权力结构,密码术会从根本上改变企业的本质和政府干涉经济交易的本质。密码无政府状态和正在兴起的信息市场联合在一起,会为所有能放到文字和图片中的材料创造一个流动市场。

12.2加密与网络
所谓网络,就是一个以分布式方式存在的东西,没有控制中心,也几乎没有清晰的边界。没有边界,如何保护?人们发现,某些特定类型的加密正是让去中心化系统在保持其灵活性的同时又不失安全性的理想方法。事实上,如果网络的大部分成员都使用点对点 [2] 加密术的话,这个网络就可以容得下各种垃圾,而不用弄一个坚固的安全墙努力把麻烦都挡在墙外。

12.3匿名的讨论
在网上匿名发贴颇为困难:互联网从本质上来说是要准确无误地追踪一切,然后不加区别地复制下来。理论上讲,通过监控传输节点从而追溯消息来源是件轻而易举的事情。
我曾经向蒂姆坦白我对匿名的潜在市场的担忧:“匿名对赎金、恐吓、绑架、贿赂、勒索、内部交易、恐怖主义来说恐怕是再好不过了。”“那么,”蒂姆说,“出售诸如种植大麻、自助堕胎、人体冷冻等不那么合法的信息又如何?举报者、忏悔者以及约会的人所需要的匿名又怎么办?”
密码反叛者认为,数字匿名是必需的,因为匿名性是和合法身份同样重要的公民工具。邮局提供了一种不错的匿名:你不需要写上回信地址,即使你写了,邮局也不会去核实。大体上讲,(不带来电显示的)电话和电报也是匿名的。最高法院赞成,人人拥有散发匿名传单和小册子的权利。

一个美好的社会所需要的不只是匿名。在线文明要求在线匿名、在线身份、在线身份验证、在线信誉、在线信托、在线签名、在线隐私以及在线的访问。所有这些对于一个开放的社会来说都是必不可少的。

12.4收益递增规律
如果只有你有传真机,那它就是废物。但是,这个世界上每多一台传真机,每个人手里的传真机就越有价值。这就是网络的逻辑,也叫作“收益递增定律”。
网络经济奖励那些“较多者”,而不是那些“较少者”

12.5 RSA
RSA是在麻省理工学院开发出来的。部分使用了联邦基金,不过后来授权给了那些发明这个软件的学术研究人员。这些研究人员在申请专利之前就把他们的加密方法发表了出来,因为他们担心国家安全局会锁住这些专利,甚至阻止该算法的民用。在美国,发明者在公布一项发明之后还有一年的时间可以申请专利。但是在其他国家或地区,专利申请必须在公开发表之前进行。因此,RSA只能获得美国的专利权。换句话说,PGP使用RSA的专利数学在海外是合法的。

12.6 隐私
由密码和数字技术推动,网络经济学改变了我们所谓的“蛮不错的私密性”。网络把隐私从道德领域转移到了市场领域——隐私成了一种商品。
大部分隐私交易很快就会发生在市场而不是政府的办公室里。因为在一个分布式的、组织松散的网络中,中央集权的政府失灵了,不再能保证事物之间的联结或者隔离。成百上千的隐私卖主会按照市场率来销售隐私。
隐私是与普通信息极性相反的信息,我把它想象成“反信息”。
在所有的东西都相互联结在一起的世界,联结、信息还有知识都非常便宜,贵重的反而是那些隔离、反信息和零知识。等到带宽免费,随时随地都在进行十亿字节的信息交换的时候,不想通讯反到成了最困难的烦事。加密系统及其同类都是隔离的技术。它们在某种程度上令网络那种无差别的联结和发送信息的固有倾向得到抑制。

12.7信息的特性
在一个由去中心化的节点组成的网络世界中,成功属于那些顺应信息复制和流动主张的人。
计算一个软件被调用的次数很容易,但是要统计它被复制过多少次就难了。”
要想收回编写代码的成本,如果直接卖代码的话就找不到几个买主,如果卖拷贝的话又太难监控。但如果用户每激活一次代码就能产生收入的话,代码的作者就可以靠写代码谋生了。 在探讨对象们“按使用”销售的市场可能性的同时,考克斯发现了网络化的信息的自然本质:让拷贝流动起来,然后按照每一次使用收费。软件不同于有形物体的地方是从根本上无法监控其复制,但是却能监控其使用。那么,为什么不围绕着信息时代的物品和制造业时代的物品之间的差别来建设信息时代的市场经济呢?如果收费机制是以监控计算机里面软件的使用为基础的话,那么卖主们就可以完全省去版权保护了。

12.8网络收费策略
要想收回编写代码的成本,如果直接卖代码的话就找不到几个买主,如果卖拷贝的话又太难监控。但如果用户每激活一次代码就能产生收入的话,代码的作者就可以靠写代码谋生了。 在探讨对象们“按使用”销售的市场可能性的同时,考克斯发现了网络化的信息的自然本质:让拷贝流动起来,然后按照每一次使用收费。
问题是,人们不愿意为他们还没有看到的信息预先付钱,觉得这些信息未必对自己有用。同样,人们也不愿意在看完了这个东西之后付钱,因为这个时候往往直觉都会“应验”:没有这东西他们也能活下去。

12.9信息付费
信息计量真正富于创造性的是它为我们提供了两个解决方案:一是记录数据使用量(流量),二是降低信息流的价格。加密-计量的方法是把价格昂贵的大块数据分成便宜的小块数据。

腾讯视频走的更远

12.10数字现金
数字现金。数字现金没有借记卡或信用卡的缺点。真正的数字现金是真钱,具有现金的私密性和电子的灵活性。支付是“真金白银”的,但没有关联性。这种现金不需要专属的硬件或软件。因此,钱可以在任何地方,任何个人之间传递。作为收钱的一方,你不必是店家或机构用户;任何接入系统的人都可以收钱。同时,任何拥有良好声誉的公司,都可以提供电子货币的充值服务。

你用数字现金卡在“乔大叔肉店”购买精良烤肉。商家通过核查发行货币银行的数字签名来确认支付给他的钱之前确实没有“花”过。不过,他看不到付钱人的记录。交易完成之后,银行就有验证帐单,上面显示你花了7美元,而且只花了一次,同时记录“乔大叔肉店”确实收到了7美元。但是交易双方没有联系,而且只有支付方同意了,银行才能重建这两笔帐。乍一看,这种既要隐蔽性又要可验证性的交易似乎不合逻辑,但要实现它们的“隔离”是完全可以做到的。
你会有关于你的支付情况的完整记录,包括你是向谁支付的。而“他们”有的则是一个收钱的记录,并不包括是谁付的钱。同时做到精确记账和100%匿名,这在数学上是可以“无条件”实现的——绝无例外。

这里的数字货币其实是比特币

12.11数字货币特点
首先,它提供了与实物现金同等的私密性。过去,如果你用一美元从商家那里买一份煽动性的小册子,商家就确实拿到了一美元,他可以把它支付给任何人;但是他没有给他钞票人的信息记录。一个小告诫:按照迄今为止的实施情况,智能卡版的现金,如果被偷或者丢失的话,它跟实物现金一样有相同的价值,也造成相同程度的损失。不过,如果用个人身份码来加密的话,可以极大地增进安全性,虽然用起来会有些麻烦。

其次,乔姆的智能卡系统是离线工作的。它不要求像信用卡那样通过电话线即时验证。这样一来,其成本就很低,而且非常适用于拥有大量小规模交易的场所,比如,在停车场、餐厅、公交车上消费或打电话、在杂货店购物等。交易记录每天一次成组传送到中央记账计算机。

12.12 加密货币改变经济结果
互联网绝对会是第一个电子货币深入渗透的地方。货币是另一类信息,一种小型的控制方式。货币也会随着互联网延伸而扩展。信息流动到哪里,货币肯定也会跟随其后。由于其去中心化、分布式的本性,加密的电子货币肯定能改变经济结构,就像个人电脑颠覆了管理和通讯结构一样

电子货币的本质——无形、快速传播、廉价以及全球渗透,很可能会造就无法抹除的隐密经济。这可比仅仅为贩毒洗钱严重多了。网络世界中,全球经济植根于分散的知识和去中心化的控制方式之中,电子货币不是一种可选项,而是一种必需。当网络文化繁盛起来的时候,准货币也会随之繁荣。

12.13
匿名数字现金的合法性从一开始就就处于灰色地带。在美国,对于公民所能使用的实物现金交易的数额是有严格规定的:你可以试试用一个背包装1万美金现钞去银行里存款。而政府对匿名数字现金的额度限制又将会是多少呢?所有政府的倾向是要求充分公开金融交易(以保证他们那份税钱)并且阻止非法交易(就像毒品之战)。
加密胜出,因为它是必要的反作用力,防止互联网不加节制地联结。任由互联网自行发展,它就会把所有人、所有东西都联结在一起。互联网说,“连接”;密码则相反,说“断开”。如果没有一些隔断的力量,整个世界就会冻结成一团超载的、由没有私密性的联结和没有过滤的信息组成的乱麻。
加密技术允许蜂巢文化所渴求的必要的失控,以在向不断深化的缠结演变中保持灵活和敏捷。

16.2 控制的未来
控制的未来是:伙伴关系,协同控制,人机混合控制。所有这些都意味着,创造者必须和他的创造物一起共享控制权,而且要同呼吸共命运。

20.1基因网络
只需几代的分裂,一个细胞就能分裂出所有类型的细胞,不管它是大象还是橡树。人体的卵细胞仅仅需要分裂50次,就能产生出上千亿的细胞,并发育成婴儿。当卵细胞沿着分叉50次的道路前行时,是什么样的无形之手在控制着每个细胞的命运,指引它们从同一个卵细胞分化成数百种专门的细胞呢?
他们偶然间发现了一种基因,并称之为调控基因。调控基因的功用令人震惊:它负责开启其他基因。这使得那种短期内破解DNA和生命奥秘的希望顷刻间化为乌有。
是什么控制了基因?是其他基因!那又是什么在控制那些基因?还是其他基因!那……
由基因组成的去中心化网络掌控着细胞网络的命运。

20.2网络数学
我在这儿叫它“网络数学”。其中的一些方法有各式各样的非正式名称:并行分布式处理、布尔网络、神经网络、自旋玻璃、细胞自动机、分类系统、遗传算法、群计算,等等。不管是哪一种网络数学,由数千个相互作用的函数所形成的横向因果关系都是其共同要素。它们都试图协调大量同时发生的事件——那种在真实世界中无处不在的非线性事件。网络数学与古典牛顿数学是相对的。牛顿数学适用于大多数物理问题,因而曾被看作是严谨的科学家所需要的唯一数学。而网络数学离了计算机则一无用处。

20.3执行的意义
以至于无论以多么智慧的方式来检验一粒未知的种子,也不能预测出最终的植物形式。要想知道一粒种子长成什么样,最便捷的途径就是让它发芽生长。

20.4系统结构与状态
他把网络中的每个节点看作是一个开关,可以开启或关闭周边的某些特定节点。而周边节点又可以反过来作用于该节点。最终,这种“甲触发乙,乙又触发甲”的混乱局面趋于一个稳定且可测量的状态。
系统的动态过程迟早会进入某个“盆地”,该“盆地”可以捕获周边的运动态,使之进入一个持久态。考夫曼认为,随机组合系统会找到通往某个盆地的道路,也即是混沌之中会涌现出无序之有序。
系统中的基因数(平方根)与这些基因最终所进入的“盆地”数之间存在大致的比率关系。

20.9平衡点
考夫曼在圣塔菲研究所的同事克里斯·朗顿从其人工生命的群体模型试验中得到了一种抽象性质,叫作λ参数。λ参数能预测一个群体在某个特定规则集下产生行为“最佳平衡点”的可能性
一个随机系统接近相变时,它会被“拉向”并停靠在最佳平衡点,在那里进化,并力求保留那个位置。
处于这个进化平衡点上的系统能够最快地学习,最容易地进化。如果朗顿和考夫曼是对的话,那么一个进化的系统会自己找到这个平衡点。

生命是被调节到“混沌边缘”的活系统——就处在那个λ点上,信息流量刚好足够到使每个事物都处于摇摇欲坠当中。 稍稍放松一点缰绳,死板的系统就会运转得更好;而稍微加强一些组织,紊乱的系统也能得到改进。

20.5 循环因果
生命和进化必然会陷入循环因果的怪圈,它们在基本面上具有套套逻辑。缺少了这种根本的循环因果逻辑矛盾,也就不可能有生命和开放的进化。矛盾是任何自维持系统所固有的特性——即便组成该系统的各部分都是一致的。

20.6数学表达
1991年,年轻的意大利科学家沃尔特·方塔纳从数学上论证了函数A生成函数B,B再产生C这样的线性序列可以容易地构成类似闭环控制系统的自生成环,因而最后的函数与最初的函数同为结果的生成者。
它们所生成的规则也正是创造它们的规则。这一点也不荒谬

20.7大一统理论
考夫曼毫不隐瞒他的野心:“我在寻找一幅自洽的图景,可以将所有的事物联系起来:从生命起源到基因调控系统中自发秩序的涌现,到可适应系统的出现,到生物体间最优折衷方案的非均衡价格的确立,再到类似热力学第二定律的未知规律。这是幅万象归一的画面。

20.8 连接与进化
考夫曼发现一个只有少数个体可以影响其他个体的系统不具备较强的适应性。连接太少不能传播创新,系统也就不会进化。增加节点间的平均连接数量,系统弹性也随之增加,遇到干扰就会“迅速反弹”。环境改变时,系统仍能维持稳定。
这种系统能够进化。而完全出乎意料的发现是,超出某个连接度时,继续增加连接度只会降低系统作为整体的适应性。

出乎许多人意料的是,这种过度连接的情形并不少见。从长远来看,过度连接的系统与一盘散沙并无二致。当许多行动取决于另外许多互相矛盾的行动时,就会一事无成。

考夫曼所研究的精简系统的最佳连接度非常低,“只在个位数左右”。拥有成千上万个成员的大型网络里,每个成员的最佳连接度小于10。

在理想的连接数下,个体之间所流动的信息量也处于理想状态,而作为整体的系统就能不断地找到最佳解决方案。即使环境快速改变,网络仍能维持稳定并作为一个整体而长久存在。

不管某个网络由多少成员组成,这个低的最佳值似乎都波动不大。换句话说,即使网络中加入更多的成员,它也不需要(从整个系统的适应性来说)增加每个节点间的连接数。通过增加成员数而不是成员间的平均连接数来加快进化。

20.10活系统的目标
任何系统寻求的首要目标都是生存。其次是保证系统最大灵活度的理想参数。而最令人兴奋的是第三个层级的目标:寻找系统在进化过程中不断增强自调节的策略和反馈机制。

人工智能

14.1 图像的人工进化
看着这些形状出现,在变化中繁殖,被选中,形状上产生分枝,再精选,然后通过世代演变,成为更加复杂的形状。不论是理智还是直觉都无法回避这样一个印象:西姆斯实际上是在繁殖图像。更丰富、更狂野、更悦目的图像历经迭代演化逐渐显露。西姆斯和计算机学家同行们把这个过程称为人工进化。
随机选择和无目的的漫游绝不能产生连贯一致的设计物,而累积选择(即“方法”)可以做到。

14.2创造与发现
当你通过人工选择在电脑中第一次进化出新生物时,感觉就像是在创造一般。确实如此。而从数学的角度看,你所做的实际上是在发现生物,因为在‘生物形态王国’的基因空间里,它早就待在那属于它的位置上了。”

14.3大千与规则
道金斯认为,要想造出一个有实际意义的生物“大千”,就必须把可能的形状限定在具有一定生物学意义的范围内。否则,即使用了累积选择的方法,找到足够多生物形态的机会也会被淹没在所有形状汇成的茫茫大海中。毕竟,他解释道,生物的胚胎发育限制了它们变异的可能性。举个例子,大多数生物都显示出左右对称的特性;通过把左右对称设定为生物形态的基本要素,道金斯就能够缩小整个库的规模,也就更容易发现生物形态。他把这种缩减称为“受限胚胎学”。他给自己的任务是设计一个“生物学意义上有趣的”受限胚胎学。

14.4 基因的引入
道金斯引入的基因是以生物的方式发生作用——每次变异都按结构化的路径来改变多个像素。这不仅缩小了生物形态库的规模,将其精炼成实用的形态群,而且为人类繁育者提供了发现形式的替代途径。生物形态基因空间的任何微妙变化都将放大成图像的显著而可靠的变化。
这给了托马斯·里德这个无冕的圣杯骑士以第二种繁育途径。里德不断地改变亲本形式的基因,观察基因引起的形状变化,以求了解如何通过改变单个基因来引导形状改变。这样他就可以通过对基因的调整来导出各种生物形态。道金斯把他程序中的这种方法叫作“基因工程学”。和在真实世界一样,它有着神奇的力量

14.5变异的出现
进化,则是一匹暴烈野马,带我们到人力所不能及之处。借助这匹难以驾驭的脚力,我们来到一个充满奇异形体之处,那些形体穷极想象之所能(但却并非出自人类想象),真若处子,素面朝天。

14.6调优
进化似乎到达了一个平台期。即使最激进的选择也不能让那个慵懒的家伙挪动半步——它似乎陷在那里了。代代更迭并没有产生更好的形式;就好像身处一个巨大的沙漠盆地,下一步与上一步没有什么分别,而朝向的顶峰仍遥不可及。
拉萨姆在探索他的空间时也曾有过类似的经历。他时不时地闯入一种他称为不稳定态的领地。在可能之形式的一些区域,基因的显著变化只能对形式造成微乎其微的改变——这也就是西姆斯所滞留的盆地。他不得不对基因大动干戈,以获得一点点形式上的推进。而在另一些区域,基因的微小变化也会造成形式的巨大改变。

14.7 变异与调优
为了避免跑过头,并加快发现的进度,拉萨姆在探索时会有意调整变异的幅度。最初他会把变异率设得比较高,以便快速扫过空间。当形状变得较有意思之后,他会把变异率调低,这样代与代之间的差距变小,他就可以慢慢地接近被隐藏起来的形状。

14.8性的出现
起初你在原型附近随机游荡,以寻找灵感;然后你对着某个让你眼前一亮的图案精雕细琢:你调低了变异度,用多配偶方式和反父母方式来进行微调,直至找到最终版本。

14.9进化主义艺术
进化主义将是当代艺术发展的下一个阶段。借用变异和有性繁殖的概念可以催生出这门艺术。
当代艺术设计趋向于更多地运用分析控制的手段,而进化主义颠覆了这种趋势。进化的终点目标更加主观(“最美者生存”),更少控制,更贴近天马行空般的意境,更加自然天成。

14.10进化是对巨大空间搜索的算法
归根结底,繁育一个有用的东西几乎就和创造一个东西一样神奇。理查德·道金斯的论断印证了这点,他说:“当搜索空间足够大时,有效的搜索流程就与真正的创造并无二致了。”在包括一切可能之书的图书馆里,发现某一本特定的书就等同于写了这本书。
进化是解决这道难题的笨办法,而我们所说的智能恰好就是一条穿堂过室的隧道。当我在博尔赫斯图书馆里搜索《失控》时,如果我足够机敏,说不定要不了几个小时我就已经辨明了绕过图书馆层层书架直捣黄龙的方向了。我可能已经注意到,一般来说,往上次翻过的书的左边去会更有“感觉”。我可能向左跑出去几英里,而这段路程以往需要很多代的缓慢进化才能通过。我也许已经了解了图书馆的架构,并可以预测出所求之书的藏身之处,这样我就可以胜过随机的猜测和乌龟爬一样的进化。通过将进化与对图书馆内在秩序的学习结合起来,我也许能找到我的《失控》。

15.1进化本源
生态学缺少好的理论来概括由每一片荒野的观察数据所积累起来的财富。它受到大量局部知识的困扰:没有一个总体理论,生态学只不过是个充斥着迷人童话的图书馆。藤壶群落的生命周期、毛茛田地的季节性形态变化或山猫家族的行为已是众所周知的了,但是,是什么原则(如果有的话)主导了这三者的变化呢?
雷对我说,“因为我不想研究进化的产品——爬藤啊、蚂蚁啊、蝴蝶啊什么的。我想研究进化本身。”

15.2雷的代码进化
雷的电进化机方案是从简单的复制体开始,给它们一个舒适的栖息地,以及大量能源和有待填补的空间。和这些家伙最接近的实物是自复制的核糖核酸碎片。这个艰巨任务看上去是可行的。他打算调制一份计算机病毒的培养液。
漏洞会杀死进程。不过,由于他的造物程序在他的影子计算机中运行,一旦变异产生一个严重“畸形”的东西,他的刽子手程序——他将其命名为“收割机”——就会将它杀死,而他的“地球”的其余部分则继续运转。“地球”实际上是找出不能复制的漏洞程序,将其从虚拟计算机中拖将出去。
雷增加了两个重要功能,将这台施乐复印机般的复制机改造成一台进化机:他的程序在复制中偶尔会搞乱几位代码,他还赋予这些“生物”中的刽子手以优先权。简言之,他引入了变异和死亡。
“所有成功的系统都会吸引寄生虫,这似乎是生命的普遍属性。”雷提醒我说。在自然界寄生虫如此常见,以至于宿主很快就共同进化出针对它们的免疫力。寄生虫随之进化出骗过那种免疫力的策略。结果宿主再共同进化出抵制它们的防御能力。实际上这些行动并不是交替出现的,而是两股持续相互作用的力量。

15.3霍兰德的算法
霍兰德从性开始入手。霍兰德的遗传算法选取两组类似于DNA的计算机代码,这两组代码在问题求解上都有不错的效果,然后以交配互换的方式将它们随机重组,看看新的代码会不会表现得更好一点。
早在20世纪60年代初理论生物学家就发现,与突变相比,交配所产生的实用个体比例更高,因而以其为基础的计算机进化也更稳定和有生命力。但是,单靠有性交配,其结果很受局限。20世纪60年代中期,霍兰德发明了遗传算法;遗传算法中起主要作用的是交配,但突变也是幕后策划者之一。通过将交配与突变结合在一起,系统变得灵活且宽泛。

霍兰德写道,进化的方法“排除了软件设计中最大的一个障碍:预先规定问题的所有特征”。如果你有许多相互矛盾而又彼此关联的变量,而目标定义又很宽泛,可能有无数个解,那么进化正是解决之道。

隐含的并行主义是进化过程确保其不单攀上高峰、而且是最高峰的魔力所在。如何找出全局最优值?通过同时考察整个地貌的每一寸土地。如何在复杂系统中对上千个相互冲突的变量做出最佳平衡?通过同时尝试上千种组合。如何培养出能在恶劣条件下生存的生物体?通过同时投入一千个略有差异的个体。

15.4进化与并行计算
达尔文引领了从对生物的个体研究到种群研究的转向,而把种群思维转变为定量科学的则是费希尔。费希尔以一个随时间推移而进化的蝴蝶族群为对象,将其看作是一个将差别信息并行传遍整个族群的整体系统。他提出了控制信息扩散的方程。通过驾驭自然界最强大的力量——进化,以及人类最强有力的工具——数学,费希尔单枪匹马开创了一个人类知识的新世界。“

15.5并行计算
直到20世纪80年代中期,丹尼·希利斯才开始建造第一台大规模并行运算计算机。
希利斯以其惯有的清楚明了向作家史蒂文·列维 [12] 总结了冯·诺依曼计算机的瓶颈所在:“你为计算机输入的知识越多,它运行得越慢。而对人来说,你给他的知识越多,他的头脑越敏捷。

15.6连接主义
而当64000个又蠢又笨的蚂蚁大脑形成相互联结的庞大网络时,它们就构成了一个进化的种群,看起来就像大脑里的一大堆神经元。那些使人类精疲力尽的难题,却往往在这里得到绝妙的解法。这种“海量连接中涌现出秩序”的人工智能方法便被冠以“连接主义”的名号。

探索人工学习的连接主义者通过将愚钝的神经元联结成巨大的网络而大展拳脚。他们研发了一种基于联结的并行处理方法——在虚拟或硬件实现的并行计算机上运行——与遗传算法相似,它能同时进行大量的运算,不过它的评估机制更加精密(更聪明)。这些大大“开窍”了的网络被称为神经网络。

15.7医药领悟的人工进化
有机分子的构成非常复杂。它们由数千个原子组成,其排列方式多达数十亿种。仅仅知道一种蛋白质的化学成分对我们了解其结构没有太大帮助。长长的氨基酸链层层叠叠绕成一团,而热点 [13] ——蛋白质的活跃部分——恰好处于外侧面的合适位置上。这种折叠蛋白质的方式就好比将一条一英里长、上面用蓝色标记了6个点的绳子绕成一团,使6个蓝色的点都落在不同的外侧面上。缠绕的方式不计其数,但是符合要求的却没有几个。

制药商们通常有两种手段来对付这种复杂性。过去,药剂师靠的是碰运气。他们试遍所有从自然中发现的化学物质,看看哪一个可以解开这把给定的锁。一般都会有一两种天然化合物能够部分地发挥效用——这也算是获得了钥匙的一部分。今天,在工程学时代,生物化学家们试图破译基因代码和蛋白质折叠之间的路径,看是否能通过工程方法设计出构建分子所需的步骤。尽管有些许成功的例子,但蛋白质折叠和基因路径仍然因过于复杂而难以控制。因而,这种被称为“合理化药物设计”的逻辑方法,实际上已经撞上了工程方法所能处理的复杂性的极限。 自20世纪80年代末起,世界各地的生物工程实验室都开始致力于完善另一种我们用来创造复杂体的工具——进化。

15.8电进化与分子进化
但药物与软件不同。我们也许可以繁育软件,然后将系统交到它的手里,任由其自行繁育,走向无人知晓的境界。但我们能否让分子也走上这条不知通往何处的进化之路呢? 答案是肯定的,但这也会是一项艰巨的任务。汤姆·雷的电进化机偏重于处理可遗传的信息,却忽略了机体;而分子进化则偏重于机体,却忽略了可遗传的信息。单纯的信息本身很难消除,而没有死亡就没有进化。肌肉和血液之所以对进化非常有帮助,正是因为机体提供了一个让信息死去的便捷方式。任何能将可遗传信息与可消亡机体合二为一的系统都具备了进化系统的要素。

核糖核酸有一个独一无二的优势,是我们所知的任何其他系统都不具有的。它能同时兼任机体和信息两个角色——既是表现形式,又是内在成因;既充当信使,又是信息。一个核糖核酸分子既要担当起与世界互动的职责,又要完成延续世界的重任,至少要把信息传递给下一代

15.9定向进化
乔伊斯告诉我,“不过在另一种进化中,选择压力 [24] 是由我们来决定的,而不是自然,因此我们称其为定向进化。” 定向进化是另一种监督式学习,另一种遍历博尔赫斯图书馆的方法,另一种繁育。在定向进化中,选择是由培育者引导的,而非自然发生的。

15.10强学习与弱学习
艾克利最感兴趣的是那些与学习有关的过程。“强学习”是一种学习方式,它需要聪明的老师。老师会告诉学生应该知道些什么,而学生则分析信息并将其储存在记忆中。不太聪明的老师则通过不同的方法教学。她对所要教的东西本身也许并不了解,但是,她能告诉学生什么时候猜出了正确答案——就像代课教师给学生测验打分一样。如果学生猜出了部分答案,老师可以给出“接近”或“偏离”的暗示,帮助学生继续探索。这样一来,这位不太聪明的老师就可能生成其本身所不具备的知识。艾克利一直在推动对“弱学习”的研究,他认为这是一种让计算空间最大化的方式:利用最少的输入信息,获取最多的输出信息。“我一直在试图找出最愚笨、最孤陋寡闻的老师,”艾克利告诉我,“我想我找到了。答案是:死亡。” 死亡是进化中唯一的老师。艾克利的使命就是查明:只以死亡为老师,能学到什么?我们还不是很清楚答案,但有些现成的例证:翱翔的雄鹰,鸽子的导航系统,或白蚁的摩天大楼。找到答案需要些时间。进化是聪明的,但同时又是盲目和愚笨的。

15.11进化与学习
如今计算机科学家们都意识到,计算方式有许多种——其中许多是进化的方式。任何人都知道,进化和学习的方式可能有数百种;不论哪种策略,实际上都是在对图书馆或空间进行搜索。“传统人工智能研究的闪光思想——也是唯一思想——就是‘搜索’,”艾克利断言道。实现搜索的方法有很多种,对自然生命中起作用的自然选择只是其中的一种。
生物意义上的生命是与特殊的硬件绑定在一起的,这就是以碳为基础的DNA分子。这个特殊的硬件限制了自然选择所能使用的搜索方法。

15.12归因的难题
由于生物体的任何变化都可能由多个基因引起,或者是在身体的发展过程中由多个相互作用的指令引起。任何外在形式的内在因果都是一张错综复杂的网络,理清这个网络所需的追踪系统其复杂性与这个生物体本身相比也不惶多让。生物学上的拉马克进化受困于一条严格的数学定律:求多个质数的乘积极其容易,但分解质因素则异常困难。最好的加密算法正是利用了这种不对称的难度。

15.13拉马克进化
在达尔文模式中,躯体代码会发生变异。某个幸运的家伙可能会意外地得到较好的结果,于是系统就选择它进行交配和复制。然而在达尔文进化中,生物交配时必须使用其代码的原始“基因”副本——即它所继承的代码,而非后天获得的经过改良的躯体代码。这正是生物的方式。所以,当铁匠进行交配时,他使用的是他的“先天”代码,而非“后天”代码。 相比之下,在拉马克模式中,当那个改良了躯体代码的幸运儿被选中进行交配时,它能使用后天获得的改良代码,作为其交配的基础。这就好比铁匠能将自己粗壮的胳膊传给后代一样

从数学意义上来说,拉马克进化注入了一点学习的要素。学习被定义为个体在活着时的适应性。在经典的达尔文进化中,个体的学习并不重要。而拉马克进化则允许个体在世时所获得的信息(包括如何增强肌肉,或如何解方程)可以与进化这个长期的、愚钝的学习结合在一起。拉马克进化能够产生更聪明的答案,因为它是更聪明的搜索方法。
从计算机科学的角度看,自然是达尔文主义者而不是拉马克主义者,这实在是很蠢。可是自然受困于化学物质。

15.13工程霸权的终结
随着软件越来越大,生存变得越重要,同时也越来越困难。要想在日复一日的使用中存活下来,就意味着必须能够适应和进化,而这需要做更多的工作。只有不断地分析自己的状况,修正自己的代码以适应新的需要,净化自己,不断地排除异常情况,并保持适应与进化,程序才能生存下来。计算必须有生命力和活力。艾克利称之为“软件生物学”或“活力计算”。程序员即使24小时都开着寻呼机,也不能确保数十亿行的代码能够不出故障。人工进化也许是唯一能使软件保持生命力和活力的方法。 人工进化是工程霸权的终结。

进化的代价就是——失控。

进化并未完全超脱我们的控制;放弃某些控制只不过是为了更好地利用它。我们在工程中引以为傲的东西——精密性、可预测性、准确性以及正确性,都将为进化所淡化。

生命是无法控制的;活系统是不可预测的;活的造物不是非此即彼的。谈起复杂程序时,艾克利表示:“‘正确’是水中月,是小系统的特性。在巨大的变化面前,‘正确’将被‘生存能力’所取代。”

17.2用进化解决特定问题

柯扎并不满足于单纯地探索可能之方程的空间,他想进化出能够解决特定问题的最佳方程。
柯扎的方法基于一种直观判断,即如果两个数学方程在解决一个问题时多少有些效果,那么它们的某些部分就是有价值的。如果这两者有价值的部分能被重新整合成一个新程序,其结果可能比两个母程序中的任何一个都更有效。

拿柯扎曾经给他的进化机器玩过的一个问题为例。那是一个由两条互相缠绕的螺旋线构成的图形,大致类似于纸风车上的双重螺旋线。柯扎要求进化方程机器进化出一个最佳方程式,来判定约200个数据点各在互绕双螺旋的哪一条线上。 柯扎将10000个随机产生的计算机公式加载到他的数据培养液里。他放任它们进化,而他的机器则挑选出最有可能获得正确公式的方程。柯扎睡觉的时候,程序树交换分枝,偶尔产生一个运行更好的程序。在他度假期间,机器照常运行。待他度假归来,系统已经进化出能完美划分双螺旋线的答案了。

他有证据表明,在进化过程末期加入简约性因素——也就是说,先让系统找到一个管用的解决方案,再开始对其进行简化,这是进化出简洁方程更好的方法。 但柯扎坚信简约的重要性被过分高估了。他说,简约不过是“人类的审美标准”。大自然本身并不特别简约

17.4进化编程
为了解决我们遇到的每一个新问题,我们最终还是要逐字逐句地为它重新编程。如何才能让计算机自行完成任务,而不必一步步告诉它该做什么和怎么做? 柯扎的答案是:进化。现实世界中,一个问题可能有一个或多个答案,而答案的范围、性质或值域可能完全模糊不清。进化就可以让计算机软件解决这种问题。

17.5 横向思维
适应是对自身结构的扭曲,以使之能够钻过一个新漏洞。而进化是更深层的改变,它改变的是构建结构本身的架构——也即如何产生变化的方式,这个过程常常为其他人提供了新的漏洞。如果我们预先确定了一台机器的组织结构,也就预先确定了它能解决怎样的问题。理想的机器应该是一台通用问题解决机,一台只有想不到没有做不到的机器。这就意味着它必须拥有一种开放性的结构。
在没有任何提示和限定答案方向的前提下,能想出一个解决方案——人们称之为横向思维,几乎就等同于人类的智能了。
我们所知唯一一台能重塑自己内部连接的机器就是我们称为大脑的灰色活体组织(大脑灰质)。我们目前唯一可以设想付诸生产的重塑自身结构的机器,可能是一种能够自我改编的软件程序。

17.6进化与基因
进化在拓展着我对可能性的认识。生命的机制与此非常相似。DNA的字节都是功能单位,是拓展可能性空间的逻辑进化者。DNA与西姆斯和柯扎的逻辑单位的运行方式是等同的。(也许我们该说他们的逻辑单位与DNA相等同?)屈指可数的几个逻辑单位就可以通过混合和配对形成天文数字般的蛋白质编码。细胞组织、疾病、药品、味道、遗传信息以及生命的基础结构等所需的蛋白质,均来自与这张小小的功能字母表。

17.7人工生命
朗顿偶然读到约翰·冯·诺依曼在20世纪40年代对人工自我复制的论证。冯·诺依曼提出了一个会自我复制的里程碑式公式。
朗顿对人工生命的定义则要更容易为人们所接受。他说,人工生命是“从不同的材料形式中提取生命逻辑的尝试”。他的论点是,生命是一个过程,是不受特殊材料表现形式限制的行为。对生命而言,重要的不是它的组成材料,而是它做了什么。生命是个动词,不是名词。
人工生命承认存在新的生命形式以及对生命的新定义。所谓“新”生命,其实也是旧瓶装新酒,是用旧的力量以新的方式来组织物质和能量。

17.8 超生命
我们开始认识到那些一度被比喻为活着的系统确实活着,不过,它们所拥有的是一种范围更大、定义更广的生命。我将之称为“超生命”。超生命是一种特殊形式的活系统,它完整、强健、富有凝聚力,是一种强有力的活系统。

人类为创造生命而做的每一次尝试都是在探索可能存在的超生命空间。这个空间包含所有能够再造地球生命起源的要素。

要想在人工生命和超生命上取得任何一点进展,唯一的办法就是运行一个有效的实例。

当我们忙于创造一个个超生命的新形式时,我们的脑海中悄然出现了一个令人不安的想法。生命在利用我们。有机的碳基生命只不过是超生命进化为物质形式的第一步而已。生命征服了碳。而如今,在池塘杂草和翠鸟的伪装下,生命骚动着想侵入水晶、电线、生化凝胶、以及神经和硅的组合物。

19.11
没有躯体的进化是不受限制的进化。而有实体的进化则被受到诸多条件的约束,并且既有的成功阻止了其开倒车。人工进化要想真的有所成就的话,也许同样需要依附一个躯体。

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×